RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 106, Issue 1, Pages 95–107 (Mi mzm12178)

This article is cited in 2 papers

On the Partition of an Odd Number into Three Primes in a Prescribed Proportion

A. A. Sagdeev

Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region

Abstract: We prove that, for any partition $1=a+b+c$ of unity into three positive summands, each odd number $n$ can be subdivided into three primes $n=p_a(n)+p_b(n)+p_c(n)$ so that the fraction of the first summand will approach $a$, that of the second, $b$, and that of the third, $c$ as $n \to \infty$.

Keywords: Goldbach–Vinogradov theorem, distribution of primes, Hardy–Littlewood circle method, trigonometric sums.

UDC: 511.3

Received: 04.09.2018
Revised: 30.10.2018

DOI: 10.4213/mzm12178


 English version:
Mathematical Notes, 2019, 106:1, 98–107

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024