RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 106, Issue 4, Pages 519–530 (Mi mzm12216)

This article is cited in 2 papers

Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials

R. M. Gadzhimirzaev

Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala

Abstract: The paper is devoted to the study of the approximation properties of Fourier sums in terms of the modified Meixner polynomials $m_{n,N}^\alpha(x)$, $n=0,1,\dots$, which generate, for $\alpha>-1$, an orthonormal system on the grid $\Omega_\delta=\{0,\delta,2\delta,\dots\}$ with weight
$$ \rho_N(x)=e^{-x}\frac{\Gamma(Nx+\alpha+1)}{\Gamma(Nx+1)} (1-e^{-\delta})^{\alpha+1},\qquad \text{where}\quad \delta=\frac{1}{N},\quad N\ge 1. $$
The main attention is paid to the derivation of a pointwise estimate for the Lebesgue function $\lambda_{n,N}^\alpha(x)$ of Fourier sums in terms of the modified Meixner polynomials for $x\in[\theta_n/2,\infty)$ and $\theta_n=4n+2\alpha+2$.

Keywords: Meixner polynomials, Fourier series, Lebesgue function.

UDC: 517.521

Received: 12.10.2018

DOI: 10.4213/mzm12216


 English version:
Mathematical Notes, 2019, 106:4, 526–536

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024