RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 106, Issue 5, Pages 688–702 (Mi mzm12248)

This article is cited in 5 papers

Papers published in the English version of the journal

Some Identities Involving the Cesàro Average of the Goldbach Numbers

M. Cantarini

Department of Mathematics and Computer Science, University of Perugia, Perugia, 06123 Italy

Abstract: Let $\Lambda(n)$ be the von Mangoldt function, and let $r_{G}(n):=\sum_{m_{1}+m_{2}=n}\Lambda(m_{1})\Lambda(m_{2})$ be the weighted sum for the number of Goldbach representations which also includes powers of primes. Let $\widetilde{S}(z):=\sum_{n\geq1}\Lambda(n)e^{-nz}$, where $\Lambda(n)$ is the Von Mangoldt function, with $z\in\mathbb{C}, \mathrm{Re}(z)>0$. In this paper, we prove an explicit formula for $\widetilde{S}(z)$ and the Cesàro average of $r_{G}(n)$.

Keywords: Goldbach-type theorems, Laplace transforms, Cesàro average.

Received: 13.11.2018
Revised: 06.06.2019

Language: English


 English version:
Mathematical Notes, 2019, 106:5, 688–702

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025