RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 106, Issue 4, Pages 483–490 (Mi mzm12259)

On a Trace Formula for Functions of Noncommuting Operators

A. B. Aleksandrova, V. V. Pellerbc, D. S. Potapovd

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Michigan State University, Department of Mathematics
c Peoples' Friendship University of Russia, Moscow
d University of New South Wales

Abstract: The main result of the paper is that the Lifshits–Krein trace formula cannot be generalized to the case of functions of noncommuting self-adjoint operators. To prove this, we show that, for pairs $(A_1,B_1)$ and $(A_2,B_2)$ of bounded self-adjoint operators with trace class differences $A_2-A_1$ and $B_2-B_1$, it is impossible to estimate the modulus of the trace of the difference $f(A_2,B_2)-f(A_1,B_1)$ in terms of the norm of $f$ in the Lipschitz class.

Keywords: trace, trace class operators, operators Lipschitz functions, Lifshits–Krein trace formula.

UDC: 517

Received: 24.11.2018

DOI: 10.4213/mzm12259


 English version:
Mathematical Notes, 2019, 106:4, 481–487

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024