RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 106, Issue 4, Pages 543–548 (Mi mzm12260)

On Extrapolation of Polynomials with Real Coefficients to the Complex Plane

A. S. Kochurov, V. M. Tikhomirov

Lomonosov Moscow State University

Abstract: The problem of the greatest possible absolute value of the $k$th derivative of an algebraic polynomial of order $n>k$ with real coefficients at a given point of the complex plane is considered. It is assumed that the polynomial is bounded by $1$ on the interval $[-1,1]$. It is shown that the solution is attained for the polynomial $\kappa\cdot T_\sigma$, where $T_\sigma$ is one of the Zolotarev or Chebyshev polynomials and $\kappa$ is a number.

Keywords: extrapolation, alternance, Zolotarev polynomial, dual problem.

UDC: 517

Received: 11.12.2018
Revised: 15.02.2019

DOI: 10.4213/mzm12260


 English version:
Mathematical Notes, 2019, 106:4, 572–576

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024