RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 109, Issue 2, Pages 247–256 (Mi mzm12351)

Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$

A. A. Makhnev

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: A. A. Makhnev and M. S. Nirova found the intersection arrays of distance regular graphs with $\lambda=2$ and at most 4096 vertices. For graphs of diameter $4$, of most interest is the array $\{21,18,12,4;1,1,6,21\}$ in this list. In this paper, we find the possible orders and fixed point subgraphs of the automorphisms of a distance regular graph with intersection array $\{21,18,12,4;1,1,6,21\}$.

Keywords: distance regular graph, graph of diameter $4$ with $a_4=0$, graph automorphism.

UDC: 519.17

Received: 12.02.2019
Revised: 01.05.2020

DOI: 10.4213/mzm12351


 English version:
Mathematical Notes, 2021, 109:2, 247–255

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025