RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2020 Volume 107, Issue 4, Pages 550–560 (Mi mzm12420)

This article is cited in 1 paper

On the Functional Independence of Zeta-Functions of Certain Cusp Forms

A. Laurinčikas

Vilnius University

Abstract: The zeta-function $\zeta(s,F)$, $s=\sigma+it$ of a cusp form $F$ of weight $\kappa$ in the half-plane $\sigma>(\kappa+1)/2$ is defined by the Dirichlet series whose coefficients are the coefficients of the Fourier series of the form $F$. The compositions $V(\zeta(s,F))$ with an operator $V$ on the space of analytic functions are considered, and the functional independence of these compositions for certain classes of operators $V$ is proved.

Keywords: zeta-function of a cusp form, functional independence, Hecke eigen-cusp form, universality.

UDC: 511.3

Received: 26.04.2019
Revised: 05.08.2019

DOI: 10.4213/mzm12420


 English version:
Mathematical Notes, 2020, 107:4, 609–617

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024