RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2020 Volume 107, Issue 6, Pages 855–864 (Mi mzm12512)

This article is cited in 3 papers

On Simple $\mathbb{Z}_2$-Invariant and Corner Function Germs

S. M. Gusein-Zade, A.-M. Ya. Raukh

Lomonosov Moscow State University

Abstract: V. I. Arnold has classified simple (i.e., having no moduli for the classification) singularities (function germs), and also simple boundary singularities: function germs invariant with respect to the action $\sigma(x_1;y_1,\dots,y_n)=(-x_1;y_1,\dots,y_n)$ of the group $\mathbb{Z}_2$. In particular, it was shown that a function germ (a boundary singularity germ) is simple if and only if the intersection form (respectively, the restriction of the intersection form to the subspace of anti-invariant cycles) of a germ in $3+4s$ variables stable equivalent to the one under consideration is negative definite and if and only if the (equivariant) monodromy group on the corresponding subspace is finite. We formulate and prove analogs of these statements for function germs invariant with respect to an arbitrary action of the group $\mathbb{Z}_2$, and also for corner singularities.

Keywords: group actions, invariant germs, simple singularities.

UDC: 517

Received: 15.07.2019
Revised: 17.09.2019

DOI: 10.4213/mzm12512


 English version:
Mathematical Notes, 2020, 107:6, 939–945

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025