RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 106, Issue 3, Pages 450–456 (Mi mzm12538)

On the Degree of Hilbert Polynomials of Derived Functors

H. Saremia, A. Mafib

a Islamic Azad University, Iran
b University of Kurdistan, Iran

Abstract: Given a $d$-dimensional Cohen–Macaulay local ring $(R,\mathfrak m)$, let $I$ be an $\mathfrak{m}$-primary ideal, and let $J$ be a minimal reduction ideal of $I$. If $M$ is a maximal Cohen–Macaulay $R$-module, then, for $n$ large enough and $1\le i\le d$, the lengths of the modules $\operatorname{Ext}^i_R(R/J,M/I^nM)$ and $\operatorname{Tor}_i^R(R/J,M/I^nM)$ are polynomials of degree $d-1$. It is also shown that
$$ \operatorname{deg}\beta_i^R(M/I^nM) =\operatorname{deg}\mu^i_R(M/I^nM)=d-1, $$
where $\beta_i^R(\,\cdot\,)$ and $\mu^i_R(\,\cdot\,)$ are the $i$th Betti number and the $i$th Bass number, respectively.

Keywords: Hilbert–Samuel polynomial, derived functors.

UDC: 512

Received: 26.12.2017

DOI: 10.4213/mzm12538


 English version:
Mathematical Notes, 2019, 106:3, 423–428

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024