RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 106, Issue 2, Pages 248–257 (Mi mzm12566)

This article is cited in 1 paper

Papers published in the English version of the journal

Global Bifurcation for Fourth-Order Differential Equations with Periodic Boundary-Value Conditions

Yanqiong Lu, Ruyun Ma, Tianlan Chen

Department of Mathematics, Northwest Normal University, Lanzhou, 730070 China

Abstract: We establish the global structure of positive solutions of fourth-order periodic boundary-value problems $u''''(t)+Mu(t)=\lambda f(t,u(t))$, $t\in[0,T]$, $u^{k}(0)=u^{(k)}(T)$, $k=0,1,2,3,$ with $M\in\big(0,4({2\pi M_4}/{T})^4\big)$ and $u^{(4)}(t)-Mu(t)+\lambda g(t,u(t))=0$, $t\in[0,T]$, $u^{k}(0)=u^{(k)}(T)$, $k=0,1,2,3,$ with $M\in \big(0,({2\pi M_4}/{T})^4\big)$; here $g, f\in C([0,T]\times[0,\infty),[0,\infty))$, $M$ is constant, and $\lambda>0$ is a real parameter. The main results are based on a global bifurcation theorem.

Keywords: existence, positive periodic solutions, fourth-order periodic boundary-value problem, bifurcation.

Language: English


 English version:
Mathematical Notes, 2019, 106:2, 248–257

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024