RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2020 Volume 107, Issue 6, Pages 902–905 (Mi mzm12635)

This article is cited in 1 paper

Sharpening an Estimate of the Size of the Sumset of a Convex Set

K. I. Olmezov

Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region

Abstract: A finite set $A=\{a_1<\dotsb<a_n\}\subset\mathbb R$ is said to be convex if the sequence $(a_i-a_{i-1})_{i=2}^n$ is strictly increasing. Using an estimate of the additive energy of convex sets, one can estimate the size of the sumset as $|A+A|\gtrsim|A|^{102/65}$, which slightly sharpens Shkredov's latest result $|A+A|\gtrsim|A|^{58/37}$.

Keywords: additive combinatorics, sumset, convex sets, convex sequences.

UDC: 511.178

Received: 15.12.2019
Revised: 17.01.2020

DOI: 10.4213/mzm12635


 English version:
Mathematical Notes, 2020, 107:6, 984–987

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024