RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2020 Volume 108, Issue 5, Pages 679–691 (Mi mzm12708)

This article is cited in 3 papers

Finite Groups with Formation Subnormal Normalizers of Sylow Subgroups

A. F. Vasil'eva, T. I. Vasilyevab, A. G. Koranchuka

a Gomel State University named after Francisk Skorina
b Belarusian State University of Transport

Abstract: Let $\mathfrak{F}$ be a formation. Properties of the class $\mathrm{w}^{*}\mathfrak{F}$ of all groups $G$ for which $\pi(G)\subseteq\pi(\mathfrak{F})$ and the normalizers of all Sylow subgroups are $\mathfrak{F}$-subnormal in $G$ are studied. In particular, it is established that this class is a formation closed with respect to taking Hall subgroups. Hereditary saturated formations $\mathfrak{F}$ coinciding with $\mathrm{w}^{*}\mathfrak{F}$ are found.

Keywords: finite group, Sylow subgroup, Sylow normalizer, $\mathfrak{F}$-subnormal subgroup, formation, hereditary saturated formation.

UDC: 512.542

Received: 07.04.2020

DOI: 10.4213/mzm12708


 English version:
Mathematical Notes, 2020, 108:5, 661–670

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024