RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2020 Volume 108, Issue 6, Pages 882–898 (Mi mzm12742)

Mean Convergence of Periodic Pseudotrajectories and Invariant Measures of Dynamical Systems

G. S. Osipenko

Sevastopol Branch of the M.V. Lomonosov Moscow State University

Abstract: A discrete dynamical system generated by a homeomorphism of a compact manifold is considered. A sequence $\omega_n$ of periodic $\varepsilon_n$-trajectories converges in the mean as $\varepsilon_n\to 0$ if, for any continuous function $\varphi$, the mean values on the period $\overline\varphi(\omega_n)$ converge as $n\to\infty$. It is shown that $\omega_n$ converges in the mean if and only if there exists an invariant measure $\mu$ such that $\overline\varphi(\omega_n)$ converges to $\int\varphi\,d\mu$. If a sequence $\omega_n$ converges in the mean and converges uniformly to a trajectory $\operatorname{Tr}$, then the trajectory $\operatorname{Tr}$ is recurrent and its closure is a minimal strictly ergodic set.

Keywords: pseudotrajectory, invariant measure, symbolic image, minimal set, ergodicity.

UDC: 517

Received: 30.03.2020
Revised: 04.07.2020

DOI: 10.4213/mzm12742


 English version:
Mathematical Notes, 2020, 108:6, 854–866

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025