RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 110, Issue 2, Pages 221–233 (Mi mzm12760)

This article is cited in 6 papers

On Joint Universality of the Riemann Zeta-Function

A. Laurinčikasab

a Institute of Data Science and Digital Technologies, Vilnius University
b Vilnius University

Abstract: A theorem is obtained on the approximation of a collection of analytic functions in short intervals by a collection of shifts of the Riemann zeta-function $(\zeta(s+a_1\tau),\dots,\zeta(s+a_r\tau))$, where $a_1,\dots, a_r$ are algebraic numbers linearly independent over the field of rational numbers.

Keywords: zeta-function, weak convergence, joint universality.

UDC: 511.3

Received: 19.04.2020
Revised: 02.04.2021

DOI: 10.4213/mzm12760


 English version:
Mathematical Notes, 2021, 110:2, 210–220

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024