RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 109, Issue 2, Pages 180–195 (Mi mzm12785)

This article is cited in 4 papers

Existence of Solutions to the Second Boundary-Value Problem for the $p$-Laplacian on Riemannian Manifolds

V. V. Brovkin, A. A. Kon'kov

Lomonosov Moscow State University

Abstract: We obtain necessary and sufficient conditions for the existence of solutions to the boundary-value problem
$$ \Delta_p u=f\quad\text{on}\quad M,\qquad |\nabla u|^{p-2}\,\frac {\partial u}{\partial \nu}\bigg|_{\partial M}=h, $$
where $p > 1$ is a real number, $M$ is a connected oriented complete Riemannian manifold with boundary, and $\nu$ is the outer normal vector to $\partial M$.

Keywords: $p$-Laplacian, Riemannian manifold, Dirichlet integral.

UDC: 517.954

Received: 08.05.2020
Revised: 14.07.2020

DOI: 10.4213/mzm12785


 English version:
Mathematical Notes, 2021, 109:2, 171–183

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025