RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2020 Volume 108, Issue 2, Pages 179–187 (Mi mzm12846)

This article is cited in 11 papers

Papers published in the English version of the journal

Nonlinear Triple Product $A^{*}B + B^{*}A$ for Derivations on $\ast$-Algebras

Vahid Darvisha, Mojtaba Nourib, Mehran Razeghib

a School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044 China
b Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, 47416-1468 Iran

Abstract: Let $\mathcal{A}$ be a prime $\ast$-algebra. In this paper, assuming that $\Phi:\mathcal{A}\to\mathcal{A}$ satisfies
$$\Phi(A\diamond B \diamond C)=\Phi(A)\diamond B \diamond C+A\diamond\Phi(B) \diamond C+A \diamond B \diamond \Phi(C)$$
where $A\diamond B = A^{*}B + B^{*}A$ for all $A,B\in\mathcal{A}$, we prove that $\Phi$ is additive an $\ast$-derivation.

Keywords: triple product derivation, prime $\ast$-algebra, additive map.

Received: 21.09.2019
Revised: 27.02.2020

Language: English


 English version:
Mathematical Notes, 2020, 108:2, 179–187

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025