RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2020 Volume 108, Issue 2, Pages 179–187 (Mi mzm12846)

This article is cited in 6 papers

Papers published in the English version of the journal

Nonlinear Triple Product $A^{*}B + B^{*}A$ for Derivations on $\ast$-Algebras

Vahid Darvisha, Mojtaba Nourib, Mehran Razeghib

a School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044 China
b Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, 47416-1468 Iran

Abstract: Let $\mathcal{A}$ be a prime $\ast$-algebra. In this paper, assuming that $\Phi:\mathcal{A}\to\mathcal{A}$ satisfies
$$\Phi(A\diamond B \diamond C)=\Phi(A)\diamond B \diamond C+A\diamond\Phi(B) \diamond C+A \diamond B \diamond \Phi(C)$$
where $A\diamond B = A^{*}B + B^{*}A$ for all $A,B\in\mathcal{A}$, we prove that $\Phi$ is additive an $\ast$-derivation.

Keywords: triple product derivation, prime $\ast$-algebra, additive map.

Received: 21.09.2019
Revised: 27.02.2020

Language: English


 English version:
Mathematical Notes, 2020, 108:2, 179–187

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024