Abstract:
Let
$\mathcal{A}$
be a prime
$\ast$-algebra. In this paper, assuming that
$\Phi:\mathcal{A}\to\mathcal{A}$
satisfies
$$\Phi(A\diamond B \diamond C)=\Phi(A)\diamond B \diamond C+A\diamond\Phi(B) \diamond C+A
\diamond B \diamond \Phi(C)$$
where
$A\diamond B = A^{*}B + B^{*}A$
for all
$A,B\in\mathcal{A}$,
we prove that
$\Phi$
is
additive
an $\ast$-derivation.
Keywords:triple product derivation, prime
$\ast$-algebra, additive map.