RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 109, Issue 4, Pages 564–570 (Mi mzm12887)

This article is cited in 1 paper

On the Kegel–Wielandt $\sigma$-Problem

S. F. Kamornikova, V. N. Tyutyanovb

a Gomel State University named after Francisk Skorina
b International University "MITSO"

Abstract: For an arbitrary partition $\sigma$ of the set $\mathbb{P}$ of all primes, a sufficient condition for the $\sigma$-subnormality of a subgroup in a finite group is given. It is proved that, if a complete Hall set of type $\sigma$ is reduced into a subgroup $H$ of a $\sigma$-complete finite group $G$ all of whose non-Abelian composition factors are alternating groups, Suzuki groups, or Ree groups, then $H$ is $\sigma$-subnormal in $G$.

Keywords: finite group, $\sigma$-subnormal subgroup, Hall subgroup, complete Hall set, Ree group.

UDC: 512.542

Received: 29.08.2020

DOI: 10.4213/mzm12887


 English version:
Mathematical Notes, 2021, 109:4, 580–584

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024