RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 109, Issue 4, Pages 508–528 (Mi mzm12912)

This article is cited in 1 paper

On the Existence and Stability of an Infinite-Dimensional Invariant Torus

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P.G. Demidov Yaroslavl State University
b Lomonosov Moscow State University

Abstract: We consider an annular set of the form $K=B\times \mathbb{T}^{\infty}$, where $B$ is a closed ball of the Banach space $E$, $\mathbb{T}^{\infty}$ is the infinite-dimensional torus (the direct product of a countable number of circles with the topology of coordinatewise uniform convergence). For a certain class of smooth maps $\Pi\colon K\to K$, we establish sufficient conditions for the existence and stability of an invariant toroidal manifold of the form
$$ A=\{(v, \varphi)\in K: v=h(\varphi)\in E,\,\varphi\in\mathbb{T}^{\infty}\}, $$
where $h(\varphi)$ is a continuous function of the argument $\varphi\in\mathbb{T}^{\infty}$. We also study the question of the $C^m$-smoothness of this manifold for any natural $m$.

Keywords: mapping, annulus principle, infinite-dimensional invariant torus, stability, smoothness.

UDC: 517.926

Received: 20.09.2020

DOI: 10.4213/mzm12912


 English version:
Mathematical Notes, 2021, 109:4, 534–550

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024