RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1998 Volume 63, Issue 3, Pages 442–450 (Mi mzm1301)

This article is cited in 25 papers

On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid

G. A. Sviridyuka, T. G. Sukachevab

a Chelyabinsk State University
b Novgorod State Pedagogical Istitute

Abstract: We study the local solvability of the Cauchy–Dirichlet problem for the system
\begin{gather*} (1-\varkappa\nabla ^2)\mathbf v_t=\nu\nabla^2\mathbf v-(\mathbf v\cdot\nabla)\mathbf v-\nabla p+\mathbf f(t), \\ 0=-\nabla(\nabla\cdot\mathbf v), \end{gather*}
which describes the dynamics of an incompressible viscoelastic Kelvin–Voigt fluid. The configuration space of the problem is described.

UDC: 517.952

Received: 09.02.1993

DOI: 10.4213/mzm1301


 English version:
Mathematical Notes, 1998, 63:3, 388–395

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024