RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 110, Issue 4, Pages 550–568 (Mi mzm13138)

This article is cited in 3 papers

Regularity of the Solution of the Prandtl Equation

V. È. Petrova, T. A. Suslinab

a TWELL, Saint Petersburg
b Saint Petersburg State University

Abstract: Solvability and regularity of the solution of the Dirichlet problem for the Prandtl equation
$$ \frac{u(x)}{p(x)}-\frac{1}{2\pi}\int_{-1}^1\frac{u'(t)}{t-x}\,dt=f(x) $$
is studied. Here $p(x)$ is a positive function on $(-1,1)$ such that $\sup(1-x^2)/p(x)<\infty$. We introduce the scale of spaces $\widetilde H^s(-1,1)$ in terms of the special integral transformation on the interval $(-1,1)$. We obtain theorems about the existence and uniqueness of the solution in the classes $\widetilde H^{s}(-1,1)$ with $0\le s\le 1$. In particular, for $s=1$ the result is as follows: if $r^{1/2}f\in L_2$, then $r^{-1/2}u,r^{1/2}u'\in L_2$, where $r(x)=1-x^2$.

Keywords: Prandtl equation, weak solution, Fourier integral transformation, integral transformation on the interval.

UDC: 517.9

Received: 05.05.2021

DOI: 10.4213/mzm13138


 English version:
Mathematical Notes, 2021, 110:4, 543–559

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024