Papers published in the English version of the journal
$N$-Laplacian Equation with a Nonlinear Neumann Boundary Condition and a Singular Nonlinearity
M. Kratou,
R. Alkhal College of Sciences at Dammam, Imam Abdulrahman
Bin Faisal University, Dammam, Kingdom of Saudi Arabia
Abstract:
In this work, we investigate the existence, nonexistence, multiplicity of weak solution for the following singular Neumann problem:
\begin{equation*}
(\mathrm{P}_{\mu,\lambda})\qquad
\begin{cases}
- \Delta_N u +|u|^{N-2}u =\mu g(u) + h(x,u)e^{bu^{N/(N-1)}}
&\text{in }\Omega,
\\[2mm]
u>0 & \text{in }\Omega, \\[2mm] |\nabla u|^{N-2} \dfrac{\partial u}{\partial\nu}= \lambda\psi |u|^{q-1}u
&\text{on }\partial\Omega,
\end{cases}
\end{equation*}
where
$\Omega\subset\mathbb{R}^N,$ $N\geq 2$ be a bounded smooth domain, $\Delta_N u = \nabla\cdot (|\nabla u|^{N-2}\nabla u)$ denotes the
$N$-Laplace operator,
$\mu,\lambda>0,$ $0<\delta<1$ and
$b>0$ is a constant. Here
$h(x,u)$ is a
$C^{1}(\overline{\Omega}\times \mathbb{R})$ having superlinear growth at infinity and
$g(u)\simeq u^{-\delta}$. Using the sub-supersolution method and the variational method, under appropriate assumptions on
$g$ and
$h,$ we show that there exists a region $\mathcal{R}\subset \{(\mu,\lambda)\colon\mu,\lambda>0\}$ bounded by the graph of a map
$\Lambda$ such that
$(P_{\mu,\lambda})$ admits at least two solutions for all
$(\mu,\lambda) \in \mathcal{R},$ at least one solution for
$(\mu,\lambda)\in \partial\mathcal{R}$ and no solution for all
$(\mu,\lambda)$ outside
$\overline{\mathcal{R}}.$
Keywords:
variational method, multiplicity results, singular equation, $N$-Laplacian equation, nonlinear Neumann boundary condition.
MSC: 35J60;
35J91,
35S30,
46E35,
58E30 Received: 13.10.2021
Revised: 16.05.2022
Language: English