RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 110, Issue 4, Pages 524–536 (Mi mzm13163)

On a Ramanujan Identity and Its Generalizations

A. T. Daniyarkhodzhaeva, M. A. Korolevb

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: In the present paper, we propose a new method of derivation of number-theoretic identities which is applied to the proof of the multidimensional analogue of one of the Ramanujan identities. This method allows us to obtain new infinite series representations for the number $\pi$, of the values of the Riemann zeta function, and of the $L$-Dirichlet series at integer points.

Keywords: Ramanujan identity, hyperbolic functions, Dirichlet character modulo $4$.

UDC: 511.33

Received: 27.05.2021

DOI: 10.4213/mzm13163


 English version:
Mathematical Notes, 2021, 110:4, 511–521

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024