RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2021 Volume 110, Issue 2, Pages 204–220 (Mi mzm13195)

The Fatou Property for General Approximate Identities on Metric Measure Spaces

G. A. Karagulyana, I. N. Katkovskayab, V. G. Krotovb

a Institute of Mathematics, National Academy of Sciences of Armenia
b Belarusian State University

Abstract: Abstract approximate identities on metric measure spaces are considered in this paper. We find exact conditions on the geometry of domains for which the convergence of approximate identities occurs almost everywhere for functions from the spaces $L^p$, $p\ge 1$. The results are illustrated with examples of Poisson kernels and their powers in the unit ball in $\mathbb{R}^n$ or $\mathbb{C}^n$, and also of convolutions with dilatations on $\mathbb{R}^n$. In all these examples, the conditions found are exact.

Keywords: metric measure space, approximate identity, Fatou property, Poisson integral.

UDC: 517

Received: 11.03.2021

DOI: 10.4213/mzm13195


 English version:
Mathematical Notes, 2021, 110:2, 196–209

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024