RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1998 Volume 63, Issue 5, Pages 709–716 (Mi mzm1337)

This article is cited in 32 papers

Three-term recurrence relations with matrix coefficients. The completely indefinite case

A. G. Kostyuchenkoa, K. A. Mirzoevb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow State Aviation Technological University

Abstract: In the space $\ell_p^2$ of vector sequences, we consider the symmetric operator $L$ generated by the expression $(lu)_j:=B_ju_{j+1}+A_ju_j+B_{j-1}^*u_{j-1}$, where $u_{-1}=0$, $u_0,u_1,\ldots\in\mathbb C^p$, $A_j$ and $B_j$ are $p\times p$ matrices with entries from $\mathbb C$, $A_j^*=A_j$, and the inverses $B_j^{-1}$ ($j=0,1,\dots$) exist. We state a necessary and sufficient condition for the deficiency numbers of the operator $L$ to be maximal; this corresponds to the completely indefinite case for the expression $l$. Tests for incomplete indefiniteness and complete indefiniteness for $l$ in terms of the coefficients $A_j$ and $B_j$ are derived.

UDC: 517.984+517.929

Received: 15.11.1996
Revised: 29.12.1997

DOI: 10.4213/mzm1337


 English version:
Mathematical Notes, 1998, 63:5, 624–630

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024