RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2022 Volume 111, Issue 6, Pages 803–818 (Mi mzm13383)

On Approximation Properties of Fourier Series in Jacobi Polynomials $P_n^{\alpha-r,-r}(x)$ Orthogonal in the Sense of Sobolev

R. M. Gadzhimirzaev

Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala

Abstract: The article deals with the problem of the deviation from a function $f$ belonging to the space $W^r$ of partial sums of Fourier series with respect to the system of polynomials $\{\varphi_n(x)\}_{n=0}^\infty$, orthogonal with respect to an inner product of Sobolev type. Here $\varphi_n(x)=(x+1)^n/n!$ for $0\le n\le r-1$ and
$$ \varphi_n(x)=\frac{2^r}{(n+\alpha-r)^{[r]} \sqrt{h_{n-r}^{\alpha,0}}}\,P_n^{\alpha-r,-r}(x)\qquad\text{for}\quad n\ge r, $$
where $P_n^{\alpha-r,-r}(x)$ is the Jacobi polynomial of degree $n$. The main attention is paid to obtaining an upper bound for a Lebesgue-type function of partial sums of the Fourier series with respect to the system $\{\varphi_n(x)\}_{n=0}^\infty$.

Keywords: Sobolev-type inner product, Jacobi polynomials, Fourier series, approximation properties.

UDC: 517.538

Received: 02.12.2021
Revised: 14.01.2022

DOI: 10.4213/mzm13383


 English version:
Mathematical Notes, 2022, 111:6, 827–840

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024