RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 113, Issue 4, Pages 560–576 (Mi mzm13394)

This article is cited in 1 paper

Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph

D. V. Pyatko, V. L. Chernyshev

National Research University Higher School of Economics

Abstract: The asymptotics of the number of end positions of a random walk on an oriented Hamiltonian metric graph is obtained.

Keywords: counting function, directed graph, dynamical system, Bernoulli–Barnes polynomial.

UDC: 519.1

MSC: 11N45, 37A50, 57M15

Received: 14.12.2021
Revised: 28.10.2022

DOI: 10.4213/mzm13394


 English version:
Mathematical Notes, 2023, 113:4, 538–551

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025