RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 113, Issue 6, Pages 863–875 (Mi mzm13431)

On a Refinement of the Schneider–Lang theorem

V. A. Podkopaeva, A. Ya. Yanchenko

National Research University "Moscow Power Engineering Institute"

Abstract: We consider some arithmetic properties of values of meromorphic functions $g_1(z)$, …, $g_m(z)$ such that each of $g'_i(z)$ is algebraically dependent over a field $K$ of algebraic numbers, $[K:\mathbb Q]<\infty$, with the functions $g_1(z),\dots,g_m(z)$. We show that if all $\{g_i(z)\}$ are meromorphic of finite order, then either they all are rational functions, or they all are rational functions of some exponential, or they all are elliptic functions, or there exists a discrete set $U$ such that the number of points $z\notin U$ such that all $\{g_i( z)\}$ lie in $K$ is finite.

Keywords: meromorphic function, rational function.

UDC: 511.464

MSC: 11J81

Received: 27.01.2022
Revised: 27.12.2022

DOI: 10.4213/mzm13431


 English version:
Mathematical Notes, 2023, 113:6, 804–814

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024