RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2022 Volume 111, Issue 3, Pages 455–469 (Mi mzm13476)

This article is cited in 1 paper

Papers published in the English version of the journal

Convergence of Spectral Expansions Related to Elliptic Operators with Singular Coefficients

V. S. Serovab, U. M. Kyllönena

a University of Oulu, Oulu, 90014, Finland
b Moscow Center of Fundamental and Applied Mathematics, Moscow, 119991, Russia

Abstract: Let $\Omega$ be a smooth domain in $\mathbb{R}^n$ (not necessarily bounded), and let $A$ be a linear elliptic differential operator of order $2m$ with singular coefficients acting in $L^2(\Omega)$. Under some assumptions of singularity for the coefficients of $A$, we consider the Friedrichs extension and study the convergence of spectral expansions in Sobolev spaces.

Keywords: Elliptic operator, Friedrichs extension, Sobolev embedding, spectral expansions.

Received: 10.10.2021

Language: English


 English version:
Mathematical Notes, 2022, 111:3, 455–469

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025