RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 113, Issue 2, Pages 163–170 (Mi mzm13493)

Density of Zeros of the Cartwright Class Functions and the Helson–Szegő Type Condition

S. A. Avdoninab, S. A. Ivanovc

a University of Alaska Fairbanks
b Moscow Center for Fundamental and Applied Mathematics
c St. Petersburg Branch of the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences

Abstract: B. Ya. Levin has proved that the zero set of a sine type function can be represented as a union of finitely many separated sets, which is an important result in the theory of exponential Riesz bases. In the present paper, we extend Levin's result to a more general class of entire functions $F(z)$ with zeros in a strip $\sup|{\operatorname{Im}\lambda_n}|<\infty$ such that $|F(x)|^2$ satisfies the Helson–Szegő condition. Moreover, we show that instead of the last condition one can require that $\log|F(x)|$ belongs to the BMO class.

Keywords: Helson–Szegő condition, upper uniform density, exponential Riesz bases.

UDC: 517.547.7

Received: 14.03.2022
Revised: 28.06.2022

DOI: 10.4213/mzm13493


 English version:
Mathematical Notes, 2023, 113:2, 165–171

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025