RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 113, Issue 1, Pages 3–10 (Mi mzm13530)

On a Polynomial Version of the Sum-Product Problem for Subgroups

S. A. Aleshinaa, I. V. Vyuginbcd

a University of Malaga
b Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
c HSE University, Moscow
d Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: We generalize two results in the papers [1:x003] and [2:x003] about sums of subsets of $\mathbb{F}_p$ to the more general case in which the sum $x+y$ is replaced by $P(x,y)$, where $P$ is a rather general polynomial. In particular, a lower bound is obtained for the cardinality of the range of $P(x,y)$, where the variables $x$ and $y$ belong to a subgroup $G$ of the multiplicative group of the field $\mathbb{F}_p$. We also prove that if a subgroup $G$ can be represented as the range of a polynomial $P(x,y)$ for $x\in A$ and $y\in B$, then the cardinalities of $A$ and $B$ are close in order to $\sqrt{|G|}$ .

Keywords: subgroup, polynomial, sum-product problem, sumset problem.

UDC: 511

Received: 06.04.2022
Revised: 19.07.2022

DOI: 10.4213/mzm13530


 English version:
Mathematical Notes, 2023, 113:1, 3–9

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024