RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2022 Volume 112, Issue 3, Pages 444–452 (Mi mzm13544)

On the Parametrization of Hyperelliptic Fields with $S$-Units of Degrees 7 and 9

G. V. Fedorovab, V. S. Zhgoonab, M. M. Petruninab, Yu. N. Shteinikovab

a "Sirius" University, Sochi
b Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow

Abstract: We show that if $k$ is an algebraically closed field with $\operatorname{char}k=0$, then the set of polynomials $f$ of degree $5$ such that the field $k(x)(\sqrt{f}\,)$ has a nontrivial $S$-unit of degree $7$ or $9$ and the continued fraction expansion of $\sqrt{f}/x$ is periodic is a one-parameter set corresponding to a rational curve with finitely many deleted points.

Keywords: hyperelliptic field, torsion point, rational curve, Gröbner basis.

UDC: 511.6

Received: 13.04.2022
Revised: 26.04.2022

DOI: 10.4213/mzm13544


 English version:
Mathematical Notes, 2022, 112:3, 451–457

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024