RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2022 Volume 112, Issue 3, Pages 350–359 (Mi mzm13548)

This article is cited in 1 paper

Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras

A. M. Bikchentaev

Kazan (Volga Region) Federal University

Abstract: Let $\mathcal{H}$ be a Hilbert space over the field $\mathbb{C}$, and let $\mathcal{B}(\mathcal{H})$ be the $\ast$-algebra of all linear bounded operators in $\mathcal{H}$. Sufficient conditions for the positivity and invertibility of operators from $\mathcal{B}(\mathcal{H})$ are found. An arbitrary symmetry from a von Neumann algebra $\mathcal{A}$ is written as the product $A^{-1}UA$ with a positive invertible $A$ and a self-adjoint unitary $U$ from $\mathcal{A}$. Let $\varphi$ be the weight on a von Neumann algebra $\mathcal{A}$, let $A\in \mathcal{A}$, and let $\|A\|\le 1$. If $A^*A-I\in \mathfrak{N}_{\varphi}$, then $|A|-I\in \mathfrak{N}_{\varphi}$ and, for any isometry $U\in \mathcal{A}$, the inequality $\|A-U\|_{\varphi,2}\ge \||A|-I\|_{\varphi,2}$ holds. If $U$ is a unitary operator from the polar decomposition of the invertible operator $A$, then this inequality becomes an equality.

Keywords: Hilbert space, linear operator, invertible operator, von Neumann algebra, $C^*$-algebra, weight.

UDC: 517.98

Received: 15.04.2022
Revised: 16.05.2022

DOI: 10.4213/mzm13548


 English version:
Mathematical Notes, 2022, 112:3, 360–368

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024