RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2022 Volume 111, Issue 5, Pages 729–735 (Mi mzm13551)

Papers published in the English version of the journal

Maximal and Riesz Potential Operators in Double Phase Lorentz Spaces of Variable Exponents

Y. Mizutaa, T. Ohnob, T. Shimomuraa

a Department of Mathematics, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8521 Japan
b Faculty of Education, Oita University, Oita-city, 870-1192 Japan

Abstract: In the present note, we discuss the boundedness of maximal and Riesz potential operators in double-phase Lorentz spaces of variable exponents defined by a symmetric decreasing rearrangement in the sense of Almut [1].

Keywords: maximal functions, Riesz potentials, Lorentz space of variable exponents, Sobolev's inequality, double phase functionals.

Received: 28.04.2020
Revised: 24.11.2021

Language: English


 English version:
Mathematical Notes, 2022, 111:5, 729–735

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024