RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2022 Volume 112, Issue 5, Pages 770–783 (Mi mzm13568)

Sharp Bernstein Inequalities for Jacobi–Dunkl Operators

O. L. Vinogradov

Saint Petersburg State University

Abstract: We find sharp constants in the Bernstein inequality
$$ \|\Lambda_{\alpha,\beta}^rf\|\le M\|f\| $$
for the Jacobi–Dunkl differential-difference operator
$$ \Lambda_{\alpha,\beta}f(x) =f'(x)+\frac{A'_{\alpha,\beta}(x)}{A_{\alpha,\beta}(x)} \frac{f(x)-f(-x)}{2}\,. $$
Here $n,r\in\mathbb N$, $f$ is a trigonometric polynomial of degree $\le n$, the norm is uniform, $\alpha,\beta\ge -1/2$, and $A_{\alpha,\beta}(x)=(1-\cos x)^\alpha(1+\cos x)^\beta|{\sin x}|$ is the Jacobi weight. In the spaces $L_p$ with Jacobi weight, upper bounds are obtained.

Keywords: Bernstein inequality, Jacobi–Dunkl operator, sharp constant.

UDC: 517.5

Received: 28.04.2022

DOI: 10.4213/mzm13568


 English version:
Mathematical Notes, 2022, 112:5, 763–775

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025