RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 113, Issue 2, Pages 197–206 (Mi mzm13580)

System of Inequalities in Continued Fractions from Finite Alphabets

I. D. Kan, G. Kh. Solov'ev

Moscow Aviation Institute (National Research University)

Abstract: The system of two inequalities
$$ \biggl|\frac yx-\psi_1\biggr|\le \varepsilon_1\qquad \text{and} \qquad \biggl\|\frac{ay}x-\psi_2\biggr\|\le \varepsilon_2 $$
is considered, and an upper bound for the number of its solutions is established. Here $a$, $\psi_1$, $\psi_2$, $\varepsilon_1$, and $\varepsilon_2$ are given real numbers, $\varepsilon_1$ and $\varepsilon_1$ are positive and arbitrarily small, $\|\cdot\|$ is the distance to the nearest integer, and $x$ and $y$ are coprime variables from given intervals such that the partial quotients of the continued fraction expansion of $y/x$ belong to a finite alphabet $\mathbf{A}\subseteq\mathbb{N}$.

Keywords: inequality, distance to the nearest integer, continued fraction, finite alphabet.

PACS: 511.321 + 511.31

MSC: 511.321+511.31

Received: 09.05.2022
Revised: 25.08.2022

DOI: 10.4213/mzm13580


 English version:
Mathematical Notes, 2023, 113:2, 212–219

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024