RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 115, Issue 1, Pages 3–13 (Mi mzm13623)

This article is cited in 1 paper

Approximation of the derivatives of a function defined on a simplex under Lagrangian interpolation

N. V. Baidakovaab, Yu. N. Subbotina

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: New upper bounds are found in the problem of approximation of $k$th derivatives of a function of $d$ variables defined on a simplex by the derivatives of an algebraic polynomial of degree at most $n$ ($0\leqslant k\leqslant n$) interpolating the values of the function at equidistant nodes of the simplex. The estimates are obtained in terms of the diameter of the simplex, the angular characteristic introduced in the paper, the dimension $d$, the degree $n$ of the polynomial, and the order $k$ of the derivative to be estimated and do not contain unknown parameters. These estimates are compared with those most frequently used in the literature.

Keywords: multidimensional interpolation, Lagrange interpolation polynomial on a simplex, finite element method.

UDC: 517.51

MSC: 65D05

Received: 17.06.2022

DOI: 10.4213/mzm13623


 English version:
Mathematical Notes, 2024, 115:1, 3–11

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025