RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 113, Issue 3, Pages 417–422 (Mi mzm13637)

Frobenius Relations for Associative Lie Nilpotent Algebras

S. V. Pchelintsev

Financial University under the Government of the Russian Federation, Moscow

Abstract: It is proved that any relatively free associative Lie nilpotent algebra of a class $l$ over a field of finite characteristic $p$ satisfies the additive Frobenius relation $(a+b)^{p^s}=a^{p^s}+b^{p^s}$ if and only if $l\le p^s-p^{s-1}+1$. It is also proved that, under the above conditions on the Lie class of nilpotency, the multiplicative Frobenius relation $(a\cdot b)^{p^s}=a^{p^s}\cdot b^{p^s}$ holds.

Keywords: Frobenius relations, Lie nilpotent algebra.

UDC: 512.552.4

MSC: 16R10, 16S15

Received: 30.06.2022

DOI: 10.4213/mzm13637


 English version:
Mathematical Notes, 2023, 113:3, 414–419

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025