RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 113, Issue 4, Pages 499–516 (Mi mzm13669)

This article is cited in 1 paper

Equality of Dimensions for Some Paracompact $\sigma$-Spaces

I. M. Leibo

Moscow Center for Continuous Mathematical Education

Abstract: The equality of the dimensions $\operatorname{Ind}X$ and $\operatorname{dim}X$ of a first countable paracompact $\sigma$-space $X$ with a 1-continuous semimetric is proved. A partial positive answer to A. V. Arkhangel'skii's question about the equality of dimensions for first countable spaces with a countable network is given. As a consequence, the equality of the dimensions $\operatorname{Ind}X$ and $\operatorname{dim}X$ for Nagata spaces (that is, stratifiable first countable spaces) with a 1-continuous semimetric is obtained.

Keywords: dimension, network, $\sigma$-space, stratifiable space.

UDC: 515.127.125

MSC: 54F45

Received: 18.07.2022
Revised: 09.11.2022

DOI: 10.4213/mzm13669


 English version:
Mathematical Notes, 2023, 113:4, 488–501

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025