RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 115, Issue 3, Pages 330–347 (Mi mzm13717)

This article is cited in 1 paper

Convergence of the Fourier Series in Meixner–Sobolev Polynomials and Approximation Properties of Its Partial Sums

R. M. Gadzhimirzaev

Daghestan Federal Research Centre of the Russian Academy of Sciences, Makhachkala

Abstract: We study the convergence of Fourier series in the system of polynomials $\{m_{n,N}^{\alpha,r}(x)\}$ orthonormal in the sense of Sobolev and generated by the system of modified Meixner polynomials. In particular, we show that the Fourier series of $f\in W^r_{l^p_{\rho_N}(\Omega_\delta)}$ in this system converges to $f$ pointwise on the grid $\Omega_\delta$ as $p\geqslant 2$. In addition, we study the approximation properties of partial sums of Fourier series in the system $\{m_{n,N}^{0,r}(x)\}$.

Keywords: Sobolev-type inner product, Fourier series, Meixner polynomial, approximative property, Lebesgue function.

UDC: 517.538

MSC: 41A10

Received: 08.09.2022
Revised: 07.07.2023

DOI: 10.4213/mzm13717


 English version:
Mathematical Notes, 2024, 115:3, 301–316

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024