RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 114, Issue 5, Pages 702–720 (Mi mzm13738)

A Mixed Problem for a Class of Second-Order Nonlinear Hyperbolic Systems with Dirichlet and Poincaré Boundary Conditions

O. M. Dzhokhadzeab, S. S. Kharibegashvilibc, N. N. Shavlakadzeb

a Tbilisi Ivane Javakhishvili State University
b Andrea Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University
c Georgian Technical University, Tbilisi

Abstract: For a certain class of second-order hyperbolic systems, a mixed problem with Dirichlet and Poincaré boundary conditions is studied. In the linear case, an explicit representation of a soultion of this problem is given and questions related to its uniqueness and existence are studied depending on the character of nonlinearities in the system.

Keywords: semilinear hyperbolic system, mixed problem, a priori estimate, Laplace invariants.

UDC: 517.956.3

MSC: 35L53

Received: 23.09.2022
Revised: 10.12.2022

DOI: 10.4213/mzm13738


 English version:
Mathematical Notes, 2023, 114:5, 748–762

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024