RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 114, Issue 4, Pages 593–607 (Mi mzm13769)

Papers published in the English version of the journal

Inequalities for Rational Functions with Prescribed Poles

N. A. Rathera, A. Iqbala, I. A. Darb

a Department of Mathematics, University of Kashmir
b Department of Applied Sciences, Institute of Technology, University of Kashmir

Abstract: For rational functions $R(z)=P(z)/W(z)$, where $P$ is a polynomial of degree at the most $n$ and $W(z)=\prod_{j=1}^{n}(z-a_j)$, with $|a_j|>1,$ $j\in \{1,2,\dots,n\},$ we use simple but elegant techniques to strengthen generalizations of certain results which extend some widely known polynomial inequalities of Erdős-Lax and Turán to rational functions $R$. In return these reinforced results, in the limiting case, lead to the corresponding refinements of the said polynomial inequalities. As an illustration and as an application of our results, we obtain some new improvements of the Erdős-Lax and Turán type inequalities for polynomials. These improved results take into account the size of the constant term and the leading coefficient of the given polynomial. As a further factor of consideration, during the course of this paper we will demonstrate how some recently obtained results could have been proved without invoking the results of Dubinin [Distortion theorems for polynomials on the circle, Sb. Math. 191(12) (2000) 1797–1807].

Keywords: polynomial, inequality, refinement.

MSC: 26D10; 41A17; 30C15

Received: 19.10.2022
Revised: 12.03.2023

Language: English


 English version:
Mathematical Notes, 2023, 114:4, 593–607

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024