RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 117, Issue 2, Pages 181–194 (Mi mzm13807)

Papers published in the English version of the journal

A coupled system of Sturm–Liouville differential equations

S. Belkahlaa, Z. Zine El Abidineb

a Faculty of Sciences Tunis, Department of Mathematics, University of Tunis El Manar, Tunisia
b Higher School of Sciences and Technology of Hammam Sousse, University of Sousse, Tunisia

Abstract: The main purpose of this paper is to investigate the existence and the asymptotic behavior of positive continuous solutions of the following nonlinear coupled system:
\begin{equation*} \begin{cases} -\dfrac{1}{A}(Au')'= a(x)u^pv^r\quad\text{on}\ \ (0,1), \\[10 pt] -\dfrac{1}{B}(Bv')'=b(x)v^q u^s\quad\text{on}\ \ (0,1), \\[10 pt] u(0)=u(1)=v(0)=v(1)=0, \end{cases} \end{equation*}
where $p,q \in (-1,1)$ and $r,s \in \mathbb{R}$ are such that $ (1- |p |)(1-| q |)-|rs | >0$. The functions $A$ and $B$ are positive and differentiable on $(0,1) $, and the positive weight functions $a$ and $b$ may be singular at the boundary and satisfy some appropriate assumptions related to the Karamata class.

Keywords: asymptotic behavior, coupled Sturm–Liouville system, Karamata class, Schauder fixed point theorem.

MSC: 34B15, 34B16, 34B18, 34B27

Received: 11.11.2022
Revised: 14.12.2024

Language: English


 English version:
Mathematical Notes, 2025, 117:2, 181–194

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025