RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 113, Issue 5, Pages 742–746 (Mi mzm13810)

This article is cited in 2 papers

Slow Convergences of Ergodic Averages

V. V. Ryzhikov

Lomonosov Moscow State University

Abstract: Birkhoff's theorem asserts that, for an ergodic automorphism, time averages converge to the space average. Krengel showed that, for a given sequence $\psi(n)\to+0$ and any ergodic automorphism, there exists an indicator function such that the corresponding time means converge a.e. slower than $\psi$. We give a new proof of the absence of estimates for rates of convergence, answering a question of Podvigin.

Keywords: ergodic averages, convergence in norm, convergence almost everywhere, rate of convergence.

UDC: 517.987

MSC: 28D05, 58F11

Received: 12.11.2022
Revised: 28.11.2022

DOI: 10.4213/mzm13810


 English version:
Mathematical Notes, 2023, 113:5, 704–707

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024