RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 114, Issue 3, Pages 390–403 (Mi mzm13868)

On a Functional of the Number of Nonoverlapping Chains Appearing in the Polynomial Scheme and Its Connection with Entropy

M. P. Savelov

Lomonosov Moscow State University

Abstract: Consider $n$ independent chains consisting of $k$ independent polynomial trials with $M$ outcomes. It is assumed that $n, k \to \infty$ and $\ln(n/M^k)=o(k)$.
We find the asymptotics of the normalized logarithm of the number of appearing chains and indicate the connection between this functional and the entropy.

Keywords: number of absent chains, number of empty cells, entropy, Shannon–McMillan–Breiman theorem, random allocations.

UDC: 519.214

MSC: 60F15, 60F25

Received: 03.01.2023
Revised: 31.01.2023

DOI: 10.4213/mzm13868


 English version:
Mathematical Notes, 2023, 114:3, 339–350

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025