RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2004 Volume 76, Issue 5, Pages 723–731 (Mi mzm139)

This article is cited in 8 papers

Uniform Convergence of Hyperbolic Partial Sums of Multiple Fourier Series

M. I. Dyachenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: It follows from results of A. Yudin, V. Yudin, E. Belinskii, and I. Liflyand that if $m\ge2$ and a $2\pi$-periodic (in each variable) function $f(\mathbf x)\in C(T^m)$ belongs to the Nikol'skii class $h_\infty^{(m-1)/2}(T^m)$, then its multiple Fourier series is uniformly convergent over hyperbolic crosses. In this paper, we establish the finality of this result. More precisely, there exists a function in the class $h_\infty^{(m-1)/2}(T^m)$ whose Fourier series is divergent over hyperbolic crosses at some point.

UDC: 517.51.475

Received: 01.10.2003

DOI: 10.4213/mzm139


 English version:
Mathematical Notes, 2004, 76:5, 673–681

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024