RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 114, Issue 6, Pages 894–908 (Mi mzm13907)

Integration of the Modified Korteweg–de Vries–Liouville Equation in the Class of Periodic Infinite-Gap Functions

A. B. Khasanova, U. O. Xudayorovb

a Samarkand State University
b Samarkand State Institute of Architecture and Construction

Abstract: In this paper, the inverse spectral problem method is used to integrate the nonlinear mKdV–L equation in the class of periodic infinite-gap functions. The solvability of the Cauchy problem for an infinite system of Dubrovin differential equations in the class of $6$ times continuously differentiable periodic infinite-gap functions is proved. It is shown that the sum of a uniformly convergent function series constructed by solving the system of Dubrovin equations and by using the first trace formula satisfies the mKdV–L equations. Moreover, we prove that if the initial function is a real-valued $\pi$-periodic analytic function, then the solution of the Cauchy problem for the mKdV–L equation is a real-valued analytic function in the variable $x$ as well; and if the number $\frac{\pi}{2}$ is a period (respectively, antiperiod) of the initial function, then the number $\frac{\pi}{2}$ is the period (respectively, antiperiod) in the variable $x$ of the solution of the Cauchy problem for the mKdV–L equations.

Keywords: modified Korteweg–de Vries–Liouville (mKdV–L) equation, Dirac operator, spectral data, Dubrovin equations, trace formulas.

UDC: 517.957

MSC: 34A55, 34K10, 34K29, 34B10, 34L40, 35Q53, 37K10, 47E05

Received: 30.01.2023

DOI: 10.4213/mzm13907


 English version:
Mathematical Notes, 2023, 114:6, 1247–1259

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024