RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 114, Issue 5, Pages 739–752 (Mi mzm13942)

Modular Generalization of the Bourgain–Kontorovich Theorem

I. D. Kan

Moscow Aviation Institute (National Research University)

Abstract: The set $\mathfrak{D}^N_\mathbf{A}$ of all irreducible denominators $\le N$ of positive rationals $<1$ whose continued fraction expansions consist of elements of the set $\mathbf{A}=\{1,2,4\}$ is considered. We prove that, for any prime $Q\le N^{2/3}$, the set $\mathfrak{D}^N_{\mathbf{A}}$ contains almost all possible remainders on division by $Q$ and the remainder term in the corresponding asymptotic formula decays according to a power law.

Keywords: continued fraction, trigonometric sum, Zaremba's conjecture, Hausdorff dimension.

UDC: 511.36+511.336

PACS: 511.36 + 511.336

MSC: 511.36 + 511.336

Received: 05.03.2023
Revised: 18.03.2023

DOI: 10.4213/mzm13942


 English version:
Mathematical Notes, 2023, 114:5, 785–796

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024