Abstract:
In the group algebra of the symmetric group $G=S_{n_1+\dots+n_\nu}$, we consider the subalgebra $\Delta$ consisting of all functions invariant with respect to left and right shifts by elements of the Young subgroup $H:=S_{n_1}\times \dots \times S_{n_\nu}$. We discuss structure constants of the algebra $\Delta$ and construct an algebra with continuous parameters $n_1,\dots,n_j$ extrapolating algebras $\Delta$, this can also be rewritten as an asymptotic algebra as $n_j\to\infty$ (for fixed $\nu$). We show that there is a natural map from the Lie algebra of the group of pure braids to $\Delta$ (and therefore this Lie algebra acts in spaces of multiplicities of the quasiregular representation of the group $G$ in functions on $G/H$).
Keywords:symmetric group, double cosets, Lie algebra of the group of braids,
hypergeometric functions, Poisson algebra.