RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 114, Issue 5, Pages 643–658 (Mi mzm13962)

On the Existence of Eigenvalues of the Three-Particle Discrete Schrödinger Operator

Zh. I. Abdullaeva, J. Kh. Boymurodovb, A. M. Khalkhuzhaevc

a Samarkand State University
b Navoi State Pedagogical Institute
c V. I. Romanovsky Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, Tashkent

Abstract: We consider the three-particle Schrödinger operator $H_{\mu,\lambda,\gamma} (\mathbf K)$, $\mathbf K\in \mathbb{T}^3$, associated with a system of three particles (of which two are bosons with mass $1$ and one is arbitrary with mass $m=1/\gamma<1$) coupled by pairwise contact potentials $\mu>0$ and $\lambda>0$ on the three-dimensional lattice $\mathbb{Z}^3$. We prove that there exist critical mass ratio values $\gamma=\gamma_{1}$ and $\gamma=\gamma_{2}$ such that for sufficiently large $\mu>0$ and fixed $\lambda>0$ the operator $H_{\mu,\lambda,\gamma}(\mathbf{0})$, $\mathbf{0}=(0,0,0)$, has at least one eigenvalue lying to the left of the essential spectrum for $\gamma\in (0,\gamma_{1})$, at least two such eigenvalues for $\gamma\in (\gamma_{1},\gamma_{2})$, and at least four such eigenvalues for $\gamma\in (\gamma_{2}, +\infty)$.

Keywords: Schrödinger operator, lattice, Hamiltonian, zero-range potential, boson, eigenvalue, total quasimomentum, invariant subspace, Faddeev operator.

UDC: 517.946

PACS: Secondary: 47A10, 47A55,47A75,47J10, 34L40

MSC: 81Q10

Received: 25.03.2023

DOI: 10.4213/mzm13962


 English version:
Mathematical Notes, 2023, 114:5, 645–658

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025