RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 115, Issue 4, Pages 589–596 (Mi mzm13972)

Large Gaps between Sums of Two Squareful Numbers

A. B. Kalmyninab, S. V. Konyaginb

a HSE University, Moscow
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: Let $M(x)$ be the length of the largest subinterval of $[1,x]$ which does not contain any sums of two squareful numbers. We prove a lower bound
$$ M(x)\gg \frac{\ln x}{(\ln\ln x)^2} $$
for all $x\geqslant 3$. The proof relies on properties of random subsets of the prime numbers.

Keywords: squareful numbers, large gaps, values of quadratic forms.

UDC: 511.32

Received: 01.04.2023
Revised: 16.12.2023

DOI: 10.4213/mzm13972


 English version:
Mathematical Notes, 2024, 115:4, 555–560

Bibliographic databases:
ArXiv: 2303.14833


© Steklov Math. Inst. of RAS, 2025